
 

 

CS103A Handout 06 

Winter 2020  

Problems for Week Six 
 

This week is all about induction in its many forms. We hope these problems give you more practice working 

with induction and thinking inductively! 

 

Getting Started: Induction and Fibonacci Numbers 

The Fibonacci numbers are a series of numbers defined by a recurrence relation. The first two Fibonacci num-

bers are 0 and 1, and each number after that is defined as the sum of the two previous numbers. Formally speak-

ing, we define the Fibonacci numbers as follows: 

F₀ = 0                F₁ = 1                Fn+2 = Fn + Fn+1 

i. Using this definition, determine the values of F₂, F₃, F₄, F₅, F₆, and F₇. 

 

The Fibonacci numbers have a lot of useful properties, many of which are most easily proven using mathemati-

cal induction. As an induction warm-up, we're going to have you prove a few of these properties. First, we're 

going to have you prove that for any natural number n, the following is true: 

F₀ + F₁ + F₂ + F₃ + … + Fn = Fn+2 – 1. 

We're going to have you work through this as a proof by induction. To do so, we're going to need some property 

P(n) that we'll show is true for all n ∈ ℕ. We'll use this one here: 

Let P(n) be the statement “F₀ + F₁ + F₂ + F₃ + … + Fn = Fn+2 – 1.” 

ii. If you want to prove this property by induction, you will need to prove a base case. Write out what you 

need to prove in order to prove P(0), then go prove it. (Hint: How many terms will be in the summation when n 

= 0?) 

 

 

 

iii. In a proof by induction, you will assume that P(k) is true for some k ∈ ℕ, then prove that P(k+1) is true. 

Write out what it is that you'd be assuming if you assumed P(k) is true, then write out what you need to prove in 

order to prove P(k+1). 

 

 

iv. Prove that if P(k) is true, then P(k+1) is true. 

 

 

 

 

 

 

Congratulations! You've just worked through a full inductive proof. ☺ 
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More Fun with Fibonacci Numbers 

You just reasoned about the sums of Fibonacci numbers. It turns out that the sums of squares of Fibonacci num-

bers also have a bunch of nice properties. Specifically, for n ≥ 0, we have 

F0
2
 + F1

2
 + F2

2
 + … + Fn

2
 = Fn Fn+1. 

Here's a graphical intuition for where this comes from: 

 

i. Prove by induction that F0
2
 + F1

2
 + F2

2
 + … + Fn

2
 = Fn Fn+1 for all natural numbers n. 

Here's another fun place where the Fibonacci numbers show up. Consider the following series of fractions: 
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These fractions are given by the recurrence relation 

R₀ = 1            Rn+1 = 1 + 
1
/Rₙ. 

It might not immediately be obvious why this is the case, so take a few minutes to go and check why this recur-

rence gives the above series. 

ii. Give exact values for R₀, R₁, R₂, R₃, R₄, and R₅. 

 

 

iii. You should see some sort of pattern emerge relating the numbers Rn from the series above to the Fibo-

nacci numbers (hint: write the numbers as fractions). Fill in the blank below to indicate what that pattern is. 

Rn = _________________________ 

iv. Using induction, prove that the pattern you came up with in part (iii) is correct. 

The fractions here you've explored are called continued fractions and have all sorts of fun and exciting mathe-

matical properties. Check out the Wikipedia article for more details! 

https://en.wikipedia.org/wiki/Continued_fraction
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Medicine Half-Lives 

A doctor has prescribed a patient medicine that is absorbed into the bloodstream. The medicine has a half-life of 

one hour, meaning that each hour, half of the medicine in the patient's bloodstream will be removed by her 

body. For example, if the patient had 5mg of the medicine in her bloodstream at 6:00PM, then at 7:00PM she 

would have 2.5mg of the medicine in her bloodstream. 

Suppose that the doctor gives the patient 1mg of the medicine at the start of every hour, all of which is immedi-

ately absorbed into her bloodstream. You are concerned because each time the patient receives a dose, some 

amount of the medicine from the previous doses will still be left in her bloodstream. Wouldn't this give the pa-

tient a dangerous amount of medicine? 

Fortunately, now that you've taken a course in discrete math, you can determine exactly how much medicine 

will be in the patient's bloodstream, which will help you determine whether she will ever have a dangerous 

amount of the medicine in her blood. 

Let cₙ denote the amount of active medication in the patient's body n hours after the first dose has been adminis-

tered. The first dose is 1mg, so c₀ = 1mg. One hour later, half of the medicine will have been cleared from her 

bloodstream, leaving 0.5mg, and the patient will receive 1mg more medicine, bringing the total up to 1.5mg. 

Thus c₁ = 1.5mg. An hour after that, half that medicine will have been cleared from her bloodstream, leaving 

0.75mg of medicine in her bloodstream, and the patient will then receive another 1mg of medicine, bringing the 

total up to 1.75mg. Thus c₂ = 1.75mg. 

i. Write a recurrence relation for cn along these lines. That is, give a value for c₀, then express the value of 

cn+1 in terms of cn.  

 

ii. Using your recurrence relation from part (i), prove, by induction, that cₙ = (2 – 1/2
n
)mg for all n ∈ ℕ. 

This proves that the patient will never have more than 2mg of medicine in her bloodstream, even if she contin-

ues to take 1mg doses every hour. 

 

 

 

 

 

 

 

Picking Coins 

Consider the following game for two players. Begin with a pile of n coins for some n ≥ 0. The first player then 

takes between one and ten coins out of the pile, then the second player takes between one and ten coins out of 

the pile. This process repeats until some player has no coins to take; at this point, that player loses the game. 

Prove that if the pile begins with a multiple of eleven coins in it, the second player can always win if she plays 

correctly. To solve this problem, we recommend that you play this game against a friend until you can find the 

winning strategy. To prove this result, proceed by induction. You might want to take steps of an unusual size. 
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Factorials! Multiplied together! 

If n is a natural number, then n factorial, denoted n!, intuitively represents the product 1 × 2 × … × n. Formally, 

we define n! using a recurrence relation: 

0! = 1                        (n+1)! = (n + 1) · n! 

i. What are 0!, 1!, 2!, 3!, 4!, and 5!? 

 

We're going to ask you to prove the following result by induction: 

    For any m, n ∈ ℕ, we have m!n! ≤ (m + n)!.   (★) 

It might not be clear exactly how you would prove this result by induction, since there are two different varia-

bles involved here, m and n. The trick is to define a property P(n) as follows: 

Let P(n) be the statement “for any m ∈ ℕ, we have m!n! ≤ (m+n)!.” 

We can now try to prove P(n) is true for all n ∈ ℕ by induction on n. 

ii. Explain why if we prove P(n) is true for all n ∈ ℕ, we will prove that statement (★) is true. 

 

 

 

iii. Prove, by induction, that P(n) is true for all n ∈ ℕ. Go slowly through this proof – there are a lot of 

quantifiers here, so take the time to write out what you're assuming for P(k) and what you need to prove in order 

to show that P(k+1) is true. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iv. Give an intuitive explanation for why statement (★) is true without appealing to induction. 
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Elimination Tournaments 

An elimination tournament is a contest between 2
n
 players that consists of a number of rounds. In each round, 

each player is paired with another player. Those players play a game and the loser of each game is eliminated 

from the tournament. When only one player remains, that player wins. 

One of the advantages of elimination tournaments is that they can quickly determine a winner without everyone 

having to play everyone else. 

i. Prove, by induction, that in an elimination tournament of 2
n
 players, exactly 2

n
 – 1 total games are 

played. Then, give an intuitive justification for this result that doesn't use induction. 

 

 

 

 

 

 A B C D E F G H  

A  W W W W W L W  

This savings comes at a cost, though. It turns out that if you have advance 

knowledge of which players would win or lose in a matchup against one 

another, you can sometimes rig tournaments so that a fairly weak player will 

end up winning. For example, suppose that you have eight players in a tour-

nament, conveniently named A, B, C, D, E, F, G, and H. You can imagine 

that there is a “hypothetical outcome matrix” that shows, for each possible 

matchup, who would win in that matchup. Those matchups might not actu-

ally come up in an elimination tournament, of course, since not everyone 

plays everyone else. 

B L  W L L L W L 

C L L  W W W L W 

D L W L  L W W L 

E L W L W  W W W 

F L W L L L  W L 

G W L W L L L  L 

H L W L W L W W  

For example, the above matrix says that player A would win in a 

matchup against players B, C, D, E, F, and H, but would lose to player 

G. Player C would lose to players A, B, and G, but would win against 

players D, E, F, and H. Given these hypothetical results, it seems like 

player A is the strongest player here – she would win against everyone 

except player G. Player D, on the other hand, is not a very strong player 

– if he were to play each other player, he'd lose more than half of his 

matches. However, as the elimination tournament bracket given here 

shows, if we knew the above results in advance, we could rig the tour-

nament so that player D ends up coming out on top, even though in a 

head-to-head match against a random player he would likely lose. 

Interestingly, though, there are limits to how weak of a player can come 

out on top. For example, it's not possible to rig a tournament so that players F or G would come out on top. 

ii. Let p be a player in an elimination tournament of 2
n
 total players (where n ≥ 1). Prove, by induction, 

that if p would win against fewer than n players in a head-to-head matchup, then p cannot possibly win the 

elimination tournament. 
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Prime Numbers 

A natural number n ≥ 2 is called a composite number if there are natural numbers p and q where pq = n and 

where both p and q are not 1 and not n. For example, 6 is composite because we can write 6 = 2 · 3. However, 7 

is not composite, because the only two natural numbers whose product is 7 are 1 and 7. A natural number n ≥ 2 

is called a prime number if it's not composite. 

There's an important result in discrete mathematics that says that every natural number can be written as a prod-

uct of zero or more prime numbers. To understand what's even meant by “a product of zero numbers” or “a 

product of one number,” we'll say that a product of zero numbers is by definition equal to 1 (much in the same 

way that the sum of zero numbers is by definition equal to 0), and a product of just one number is by definition 

equal to that number. This means, for example, that we can write 1 as the product of no numbers and write any 

natural number n as the product of just itself and nothing else. 

Using a proof by complete induction, prove that every natural number n ≥ 1 can be written as a product of zero 

or more prime numbers. 


